This is something of a rough draft... I'll continue working on it as this week goes by.

<Introduction and basic purpose of BogoSec goes here...>

OVERVIEW

Bogosec is written in perl, with modularity in mind; most of the components are designed so they can be swapped out later. The most basic functionality is to call a source code formatting program <GNU something-or-other... I've yet to find a decent one> and standardize the code structure so the lines can be counted accurately. This number is used in conjunction with the absolute score returned by the scanners as a metric to gauge the "relative" vulnerability of the source code. BogoSec's primary purpose will be to operate on code written in c/c++, however as some of the analyzers it employs can handle other languages, there will also be some support for Perl, PHP, and Python. The scanning will be handled by an interface that communicates with the different scanners via a plugin mechanism described below. For the time being, only rats and flawfinder are supported.

USER INTERFACE

BogoSec is a command line driven program (though there is always the option of writing a GUI for it later). There are two basic modes – standard and interactive. In standard mode, BogoSec is called as any other unix utility. Options are passed to it from the command line, and further options are parsed from a configuration file (default is bogorc). The scanners are called one by one and the output is parsed into human readable format and dumped to the screen. The user can choose how verbose the output will be. In interactive mode the program behaves in much the same way. However, after calling the scanners, the output is given to the user interactively. Each vulnerable line of code is displayed independently with the appropriate data returned by the scanners, after which the user is given a prompt. The options are to:

1. log the vulnerability

2. ignore the vulnerability

Ignored vulnerabilities are added to a suppress file, and from then on will always be ignored by BogoSec. The user can then continue coding without the annoyance of seeing the same messages dumped to the screen each time. The only trace that anything is wrong will be a message in the output that lets the user know there are suppressed vulnerabilities. The option also remains to add items to the suppress file by hand.

PLUGIN INTERFACE

Each source code analyzer (scanner) to be used will have it's own plugin defined in the plugins directory (.bogosec/plugins/). These plugins will be written in perl, and will most likely have to be updated as the analyzers themselves are updated. However, the interface between the plugins and the main program should remain the same. It is defined as such:

· Any command line arguments to the scanners will be defined on the command line, defaults will be stored in the bogorc resource file.

· The list of which analyzers to employ in a given session will be given on the command line, the default will be stored in bogorc

· The plugin will take 3 variables

1. An array of filenames to be operated on (optional)

2. A directory (optional)

3. An array of line numbers to ignore warnings on

· note that 1 or 2 must be defined (both cannot be blank)

· The plugin will usually return 4 variables

1. The line number of the offending vulnerability

2. A brief header describing the problem

3. A numerical rating of the severity (1-10 with 10 as the highest)

4. The verbose text output returned by the scanner

· Plugin will suppress warnings defined in suppress file

DIRECTORY/FILE STRUCTURE

The default directory for the config, suppress, and log files will be .bogosec/ under the users home directory. From there the files will be:

.bogosec/bogorc

.bogosec/suppress

.bogosec/plugings/*

.bogosec/logs/*

LOGGING

All passes will be logged, where the newest will always overwrite the older file. The full output of all of the source code scanners will be put into a file <scanner_name>.log in the logs directory. An error log might be added if needed (.bogosec/logs/error.log)

