Package weka.classifiers.functions.pace
Class MixtureDistribution
java.lang.Object
weka.classifiers.functions.pace.MixtureDistribution
- All Implemented Interfaces:
RevisionHandler
,TechnicalInformationHandler
- Direct Known Subclasses:
ChisqMixture
,NormalMixture
public abstract class MixtureDistribution
extends Object
implements TechnicalInformationHandler, RevisionHandler
Abtract class for manipulating mixture distributions.
REFERENCES
Wang, Y. (2000). "A new approach to fitting linear models in high dimensional spaces." PhD Thesis. Department of Computer Science, University of Waikato, New Zealand.
Wang, Y. and Witten, I. H. (2002). "Modeling for optimal probability prediction." Proceedings of ICML'2002. Sydney.
- Version:
- $Revision: 1.5 $
- Author:
- Yong Wang (yongwang@cs.waikato.ac.nz)
-
Field Summary
Fields -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionempiricalProbability
(DoubleVector data, PaceMatrix intervals) Computes the empirical probabilities of the data over a set of intervals.void
fit
(DoubleVector data) Fits the mixture (or mixing) distribution to the data.void
fit
(DoubleVector data, int method) Fits the mixture (or mixing) distribution to the data.fitForSingleCluster
(DoubleVector data, int method) Fits the mixture (or mixing) distribution to the data.abstract PaceMatrix
fittingIntervals
(DoubleVector data) Contructs the set of fitting intervals for mixture estimation.Gets the mixing distributionReturns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.abstract PaceMatrix
probabilityMatrix
(DoubleVector s, PaceMatrix intervals) Contructs the probability matrix for mixture estimation, given a set of support points and a set of intervals.abstract boolean
separable
(DoubleVector data, int i0, int i1, double x) Return true if a value can be considered for mixture estimatino separately from the data indexed between i0 and i1void
Sets the mixing distributionabstract DoubleVector
supportPoints
(DoubleVector data, int ne) Contructs the set of support points for mixture estimation.toString()
Converts to a stringMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface weka.core.RevisionHandler
getRevision
-
Field Details
-
NNMMethod
public static final int NNMMethodThe nonnegative-measure-based method- See Also:
-
PMMethod
public static final int PMMethodThe probability-measure-based method- See Also:
-
-
Constructor Details
-
MixtureDistribution
public MixtureDistribution()
-
-
Method Details
-
getTechnicalInformation
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformation
in interfaceTechnicalInformationHandler
- Returns:
- the technical information about this class
-
getMixingDistribution
Gets the mixing distribution- Returns:
- the mixing distribution
-
setMixingDistribution
Sets the mixing distribution- Parameters:
d
- the mixing distribution
-
fit
Fits the mixture (or mixing) distribution to the data. The default method is the nonnegative-measure-based method.- Parameters:
data
- the data, supposedly generated from the mixture model
-
fit
Fits the mixture (or mixing) distribution to the data.- Parameters:
data
- the data supposedly generated from the mixturemethod
- the method to be used. Refer to the static final variables of this class.
-
fitForSingleCluster
Fits the mixture (or mixing) distribution to the data. The data is not pre-clustered for computational efficiency.- Parameters:
data
- the data supposedly generated from the mixturemethod
- the method to be used. Refer to the static final variables of this class.- Returns:
- the generated distribution
-
separable
Return true if a value can be considered for mixture estimatino separately from the data indexed between i0 and i1- Parameters:
data
- the data supposedly generated from the mixturei0
- the index of the first element in the groupi1
- the index of the last element in the groupx
- the value- Returns:
- true if a value can be considered
-
supportPoints
Contructs the set of support points for mixture estimation.- Parameters:
data
- the data supposedly generated from the mixturene
- the number of extra data that are suppposedly discarded earlier and not passed into here- Returns:
- the set of support points
-
fittingIntervals
Contructs the set of fitting intervals for mixture estimation.- Parameters:
data
- the data supposedly generated from the mixture- Returns:
- the set of fitting intervals
-
probabilityMatrix
Contructs the probability matrix for mixture estimation, given a set of support points and a set of intervals.- Parameters:
s
- the set of support pointsintervals
- the intervals- Returns:
- the probability matrix
-
empiricalProbability
Computes the empirical probabilities of the data over a set of intervals.- Parameters:
data
- the dataintervals
- the intervals- Returns:
- the empirical probabilities
-
toString
Converts to a string
-